If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-10=-2x
We move all terms to the left:
5x^2-10-(-2x)=0
We get rid of parentheses
5x^2+2x-10=0
a = 5; b = 2; c = -10;
Δ = b2-4ac
Δ = 22-4·5·(-10)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{51}}{2*5}=\frac{-2-2\sqrt{51}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{51}}{2*5}=\frac{-2+2\sqrt{51}}{10} $
| 3p^2+6p-4=0 | | 3p^2+6p-7=-3 | | R=800x-0.25x^2 | | 2(-3+3)+4x=-4 | | 2x+7-(-1x)=-(-5+-1x) | | (9/16)v=36 | | 0=2x-4/3x+1 | | k/3+5=8/3 | | (6x^2-7x+2)=0 | | (6y-9)+6y=4 | | 2x+7–(-1x)=-(-5+-1x) | | 0.75p=46.50 | | 42=51-v | | 7/9+x=1.1/9 | | 3a+7=-11+2a | | (x-30)(2x-120)=1/2x+15 | | 2(3x-6)=6x-6 | | 0=x^2+.4x+4.4 | | 17(t+5)=0 | | -17=(-14)+k | | 1/2x+16=-0.6-3x | | 9.6+m=–0.4 | | 4(x+6=)-24 | | 4(x+6=-24 | | -6=(-11)=j | | (2x^2+4x-576)=0 | | 6y=4y+14 | | 64+70+y=180 | | 2u-4+2(2u+4)=-2(u+7) | | x-(15/100)=112500 | | -5(1/6x-8)=40-x+1/6x | | 9x^2+18x+19=8 |